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Abstract 

Empirical communication scholars and scientists in other fields regularly use regression models 

to test moderation hypotheses.  When the independent variable X and moderator M are 

dichotomous or continuous, the practice of testing a linear moderation hypothesis using 

regression analysis by including the product of X and M in a model of dependent variable Y is 

widespread.  But many research designs include multicategorical independent variables or 

moderators, such as in an experiment with three or more versions of a stimulus where 

participants are randomly assigned to one of them.  Researchers are less likely to receive training 

about how to properly test a moderation hypothesis using regression analysis in such a situation.  

In this tutorial, we explain how to test, visualize, and probe interactions involving a 

multicategorical variable using linear regression analysis.  While presenting and discussing the 

fundamentals—fundamentals that are not software specific—we emphasize the use of the 

PROCESS macro for SPSS and SAS, as it greatly simplifies the computations and potential for 

error that exists when doing computations by hand or using spreadsheets based on formulas in 

existing books on this topic.  We also introduce an iterative computational implementation of the 

Johnson-Neyman technique for finding regions of significance of the effect of a multicategorical 

independent variable when the moderator is continuous.   
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A Tutorial on Testing, Visualizing, and Probing an Interaction Involving a  

Multicategorical Variable in Linear Regression Analysis 

Communication scholars are interested in establishing the effects of communication on a 

variety of social and behavioral outcomes, such as participation in the political process, 

happiness and satisfaction in one’s relationships with others, or willingness to engage in a 

particular form of behavior such as getting vaccinated or protecting oneself from cancer or other 

negative health outcomes, among many other things. They are also interested in the boundary 

conditions of such effects, meaning when, or for whom, or in what context communication in its 

many forms has an effect and when it does not, or when its effect is strong or weak, positive or 

negative. Indeed, it could be argued that the search for moderators of a communication effect is 

as important when developing and testing theory as is establishing whether or not an effect exists 

in the first place (c.f., Eveland, 1997). 

Variable M is said to moderate X’s effect on Y if the effect of X on Y depends on M. 

Moderation is also known as interaction. That is, if M moderates X’s effect on Y, then X and M 

interact in their influence on Y (though some make distinctions between moderation and 

interaction, we do not here). Research that tests a moderation or interaction hypothesis focuses 

on examining the contingencies or boundary conditions of an effect. Establishing such boundary 

conditions—the conditional nature of a phenomenon—is important in both basic and applied 

research. For example, establishing that health messages differing in their emotional appeal to 

change an unhealthy behavior have different effects on perceivers who differ in certain ways 

(e.g., age, gender, ethnicity, or various psychological or cognitive factors) helps advocates of 

healthy behavior tailor messages to different audiences while at the same time informing theory 

about how people process or interpret health-related messages. 
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Communication scholars, and indeed researchers in most any empirical field, typically 

are first exposed to the concept of moderation or interaction in the context of coursework on 

analysis of variance, where interaction manifests itself in the form of inconsistency in simple 

effects. Two simple effects are inconsistent if the effect of one categorical factor on some 

dependent variable differs across levels of a second categorical factor. Later, researchers 

fortunate enough to take a good regression course in or acquire one of the many books on data 

analysis that discuss interactions in regression models (e.g., Cohen, Cohen, West, & Aiken, 

2003; Darlington & Hayes, 2017; Hayes, 2005, 2013) learn about testing a moderation 

hypothesis involving continuous variables, or between a continuous and a dichotomous variable, 

using linear regression analysis. Most typically, this is accomplished by including the product of 

X and M in a regression model along with X and M themselves. This allows the effect of X on Y 

to vary linearly with M. 

In our experience, communication scholars and other social scientists are less likely to 

receive much if any training on how to properly test a moderation hypothesis using regression 

analysis when one of the variables is multicategorical, meaning categorical with at least three 

categories. Importantly, many research designs involve multicategorical variables, such as when 

an experimenter creates or collects three or more versions of a communication-related stimulus 

that vary on some manipulated dimension or feature (e.g., Feldman & Hart, 2016; Hurley, 

Jensen, Weaver, & Dixon, 2015; Niederdeppe, Shapiro, Kim, Bartolo, & Porticella, 2014), or 

when the effects of communication are measured in people who differ in (for example) ethnicity 

or political party identification (e.g., Habush, Warren, & Benuto, 2012).  

 To be sure, researchers are exposed to the analysis of multicategorical variables in 

analysis of variance classes, but they are often left unsure how to test, visualize, or probe a 
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moderation effect when one of the variables involved in the interaction is continuous. In that 

situation, the temptation is strong to categorize the continuous variable by artificially slicing the 

continuum up into groups (using a median split or other form of dichotomization or 

trichotomization) so that factorial analysis of variance, a procedure many researchers are more 

familiar with, can be used. Categorization of continuous variables is rarely a good idea (Hayes, 

2005; Irwin & McClelland, 2002; Kuss, 2013; Maxwell & Delaney, 1993; Rucker, McShane, & 

Preacher, 2015; Veiel, 1988), nor is it necessary. Alternatively, a researcher might dichotomize a 

multicategorical variable by collapsing groups, thereby allowing him or her to use a single 

crossproduct between X and M in a regression model to estimate interaction. Although this 

simplifies the analysis, it disrespects the design, throws away distinctions between conditions or 

groups made at the design phase, and may mask important differences between groups that exist.  

In this tutorial, we discuss how to estimate, visualize, and probe interactions involving a 

multicategorical and a continuous variable in a regression model. Our objective is to familiarize 

researchers with the basic statistical principles and show how these principles are implemented 

both in an ordinary regression routine and in the PROCESS macro for SPSS and SAS, a 

convenient regression-based analytical tool that takes much of the computational burden off the 

researcher’s shoulders. After first discussing how to represent a multicategorical variable in a 

regression model, we discuss the model comparison approach to testing interaction and show 

how to visualize a regression model with an interaction involving a multicategorical variable. We 

then discuss pick-a-point and Johnson-Neyman procedures for probing an interaction, including 

omnibus approaches and approaches that focus on pairwise comparisons between groups. New to 

this treatment of the topic is the introduction of an easy-to-use computational tool (OGRS) that 

finds Johnson-Neyman regions of significance for the effect of a multicategorical variable that 
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interacts with a continuous variable. We end with various miscellaneous topics such as the 

inclusion of covariates, assumptions, and multicategorical moderators.  

 Throughout this tutorial, we use the term independent variable or focal predictor to refer 

to the variable X whose effect on an outcome Y is of interest. The moderator variable M, by 

contrast, is the variable that in some way modifies or influences the size of the independent or 

focal predictor’s effect on Y. This does not mean that M may not be or can’t be under the control 

of an experimenter and thus independently manipulated in some fashion. Ultimately, the 

symmetry property of interactions (Darlington & Hayes, 2017; Hayes, 2013) tells us that one 

person’s independent variable or focal predictor could be another person’s moderator when 

interpreting the same model, depending on how the question is phrased.  Furthermore, sometimes 

it is helpful to examine a model and probe an interaction twice, flipping the roles of focal 

predictor and moderator (see e.g., Berry, Golder, & Milton, 2012). But when we say independent 

variable or focal predictor, we mean the variable whose effect on Y is being estimated. It will 

always be denoted X in our discussion. 

Working Example 

We illustrate the principles and procedures relying on data from a study of video game 

effects conducted by Gabbiadini, Riva, Andrighetto, Volpato, and Bushman (2016) and publicly 

available through the Open Source Framework archive at https://osf.io/hu85t/. The participants 

in this study (n = 155) were teenagers and young adults (referred to henceforth as “adolescents”), 

both male and female, varying in age between 15 and 20 years old. Each participant was 

randomly assigned to play one of three categories of video games that varied in violence and 

sexist content. The control game contained no violence or sexist content, whereas the other two 

games contained either violence without sexist content (referred to as the “violence-only” 
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condition) or both violent content as well as content that included male characters playing 

dominant roles over submissive, sexualized female characters (the “violent-sexist” condition). 

After 30 minutes of game play, the participants responded to a series of questions used to 

quantify their endorsement of masculine beliefs. These included perceptions that it is acceptable 

for a man to use any means necessary to convince a woman to have sex, and that boys should be 

encouraged to display their physical prowess. This variable—masculine beliefs—is the 

dependent variable Y in all analyses we report below. Scores on this scale can vary between 1 

and 7.  In most of this tutorial, our independent variable or focal predictor X is video game 

played (i.e., level of violent, sexist content), and the moderator M is age of the participant. 

Although age is measured coarsely (years) and thus can take only 6 values in the data, in reality 

age is a continuum and is only forced to be discrete through the measurement system used. Thus, 

we treat age as a continuum in the analyses we report.  

A one-way analysis of variance on masculine beliefs reveals a significant effect of video 

game content on such beliefs, F(2,152) = 3.335, p = .038. Those who played the violent sexist 

game reported higher masculine beliefs on average ( 3Y  = 3.025, SD = 0.725) than did those who 

played the violence-only game ( 2Y  = 2.778, SD = 0.732). Those who played the control no 

violence game reported the lowest average level of masculine beliefs ( 1Y  = 2.628, SD = 0.865). 

But as we will show, the pattern of differences between groups in masculine beliefs following 

game play depends on the age of the player. Before discussing how to test and probe an 

interaction involving such a multicategorical variable and a continuous moderator, we address 

how to represent a multicategorical variable in a regression model. 

Representing a Multicategorical Variable in a Regression Model 

As discussed in many treatments of regression analysis (e.g., Cohen, Cohen, West, & 
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Aiken, 2003; Darlington & Hayes, 2017), a multicategorical variable with k categories can 

be used as a predictor in a regression model if it is properly represented with k − 1 

regressors coding the groups represented by the variable. There are many ways this can be 

done; only three are described here. Consider a multicategorical variable with k = 3 categories, 

such as in the video game study. Table 1 shows three ways one might choose to represent three 

groups using a group coding system. For all these methods, we construct two variables D1 and 

D2. The pattern of values for D1 and D2 represents the group in which a case resides.  

For instance, using indicator or dummy coding when k = 3, D1 = D2 = 0 for all cases 

in the first group, D1 = 1 and D2 = 0 for all cases in the second group, and D1 = 0 and 

D2 = 1 for all cases in the third group. The group with zeros on D1 and D2 is known 

as the reference group or baseline category. Using this coding system for a three group 

categorical variable, in a linear regression model of the form 

22110
ˆ DbDbbY   (1) 

b1 estimates the mean difference in Y between groups 1 and 2 (i.e., 12 YY  ) and b2 

estimates the mean difference in Y between groups 1 and 3 (i.e., 13 YY  ). If additional 

variables are included in Equation 1 as covariates, b1 and b2 represent estimated difference 

between adjusted means, meaning estimated differences in Y between groups holding the 

covariate(s) constant. Standard errors, t- and p-values, and confidence intervals available in 

regression output provide inference about differences between the means. 

 To illustrate, Table 2 contains a regression model estimating masculine beliefs from 

game condition using an indicator coding system. In the data, the three conditions are held in a 

variable named game (1 = no violence, 2 = violence-only, 3 = violent-sexist) and mbelief is the 
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participant’s score on the measure of masculine beliefs.1 We used the no-violence condition as 

the reference (D1 = D2 = 0), with D1 coding the violence-only condition (D1 = 1, D2 = 0) and D2 

coding the violent-sexist condition (D1 = 0, D2 = 1). In SPSS, the syntax below generates the 

indicators codes: 

compute d1 = (game = 2). 
compute d2 = (game = 3). 

The model accounts for just under 4% of the variance in masculine beliefs, with an F-ratio and p-

value that is equivalent to the F-ratio and p-value from the one-way ANOVA, R2 = .042, 

F(2,152) = 3.335, p = .038. The regression coefficient for D1 is b1 = 0.150, which is equal to the 

mean difference between the violence-only and no violence condition ( 12 YY  = 2.778 – 2.628 = 

0.150). The regression coefficient for D2 is b2 = 0.397, which is equal to the mean difference 

between the violent-sexist condition and the no violence condition ( 13 YY  = 3.025 – 2.628 = 

0.397). In a model with no covariates, as this one, the regression constant b0 is the mean of Y for 

the reference group, which in this case is the no violence condition, and so b0 = 2.628 = 1Y . 

 Notice that when this model is applied to generate estimates of Y, it generates three 

estimates that correspond to the groups means. For those assigned to the control no violence 

condition, D1 = D2 = 0, and the model generates Ŷ = 2.628 + 0.150(0) + 0.397(0) = 2.628, which 

is the mean for the no violence condition. For those in the violence-only condition, D1 = 1 and 

D2 = 0, and so Ŷ = 2.628 + 0.150(1) + 0.397(0) = 2.778, which is the mean for the violence-only 

condition. Finally, for those in the violent-sexist condition (D1 = 0, D2 = 1), Ŷ = 2.628 + 0.150(0) 

+ 0.397(1) = 3.025, which is the mean for the violent-sexist condition.  

Indicator coding is common and perhaps the most frequently used coding system. 

                                                            
1 In the data file as downloaded from the Open Source Framework, video game condition is held 
in a variable named “condition” and masculine beliefs is named “mas_beli”. 
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Alternative coding systems exist. For example, if the multicategorical variable is an ordinal 

variable, sequential coding coding can be useful. Sticking with a k = 3 example, 

with sequential coding, the ordinally lowest group on the dimension defining the 

multicategorical variable is coded with zeros on D1 and D2, D1 is set to one for the other 

groups, and D2 set to one for the ordinally highest group (see Table 1) but zero for the 

ordinally middle group. For a complete description of how to generate sequential codes for any 

number of groups see Darlington and Hayes (2017). Using this system, regression coefficients 

quantify differences on the dependent variable between groups that are ordinally adjacent on the 

categorical variable. That is, in a model of the form in Equation 1, b1 quantifies the estimated 

difference in Y between the ordinally middle and the lowest group (i.e., 12 YY  ), and b2 

quantifies the estimated difference in Y between the ordinally highest group and the middle 

group (i.e., 23 YY  ).  

Although sequential coding was described above as useful when the 

multicategorical variable codes an ordinal dimension, it can also be used for a nominal 

multicategorical variable if the groups are strategically “ordered” in such a way 

during the coding process such that the codes generate comparisons of interest. In the video 

game example, if we consider the no violence condition “ordinally lowest,” the violence-only 

condition as the “middle” condition, and the violent-sexist condition as “ordinally highest,” a 

sequential coding system will generate regression coefficients that estimate the difference in 

masculine beliefs between those the violence-only (D1 = 1, D2 = 0) and no violence conditions 

(D1 = 0, D2 = 0), and between the violent-sexist (D1 = 1, D2 = 1) and violence-only conditions.   

The SPSS code below constructs the sequential codes: 

compute d1 = (game > 1). 
compute d2 = (game > 2). 
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and the model is presented in Table 2. As can be seen, b1 = 0.150 = 12 YY   = 2.778 – 2.628, and 

b2 = 0.247 = 23 YY   = 3.025 – 2.778. The regression constant b0 is 1Y , the mean of the ordinally 

lowest group.  This is a mathematically equivalent model, in that it fits just as well as the model 

using indicator coding of groups, and it reproduces the group means. 

Helmert coding, an alternative coding method for ordinal multicategorical variables, 

generates regression coefficients quantifying the difference between means for one group and all 

groups ordinally higher on the multicategorical ordinal variable. With three groups, a Helmert 

coding scheme is provided in Table 1. For a complete description of how to generate Helmert 

codes for any number of groups see Darlington and Hayes (2017). When D1 and D2 are regressed 

on Y as in Equation 1, b1 estimates the mean difference in Y between the ordinally lowest group 

and the unweighted mean of means for the middle and highest groups [i.e., 132 )(5.0 YYY  ], and 

b2 estimates the difference between the means of the middle and ordinally highest groups (i.e., 

23 YY  ). Readers familiar with contrasts in ANOVA might recognize D1 and D2 as representing 

two orthogonal contrasts. 

 Table 2 contains the regression model using Helmert coding, which like sequential 

coding, can also be used when the group variable is nominal as in the video game example. In 

this model, the regression coefficient for D1 estimates the difference between the unweighted 

average masculine beliefs in the violence-only (D1 = 1/3, D2 = –1/2) and violent-sexist (D1 = 1/3, 

D2 = 1/2) conditions relative to the no violence condition (D1 = –2/3, D2 = 0), and the regression 

coefficient for D2 estimates the average difference in masculine beliefs between the violence-

only and violent-sexist conditions.2 The SPSS code below constructs the Helmert codes: 

                                                            
2 When means are combined but unweighted, differences in group sample sizes are ignored in the 
construction of the combined mean. 
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if (game = 1) d1 = -2/3. 
if (game = 1) d2 = 0. 
if (game = 2) d1 = 1/3. 
if (game = 2) d2 = -1/2. 
if (game = 3) d1 = 1/3. 
if (game = 3) d2 = 1/2. 

and as can be seen in Table 2, b1 = 0.274, which is 0.5( 3Y  + 2Y ) – 1Y  = 0.5(2.778 + 3.025) – 

2.628. And as discussed above, b2 = 0.247, or 23 YY   = 3.025 – 2.778. The regression constant 

b0 is the unweighted mean of the three group means: .811.23/)( 321  YYY  This model fits 

the same as the models using indicator or sequential coding and also reproduces the group 

means. 

 We have shown that each of these approaches to coding groups generates equivalent 

models as gauged by model fit and the estimates of Y they generate. The test of model fit, in the 

form of an F-ratio and p-value for R2, is the same as the F-ratio and p-value from a one-way 

ANOVA comparing the three group means. This test can be construed as test on the fit of the 

model, measured with R2, or, alternatively, as a test of the null hypothesis that both of the 

regression coefficients for the D1 and D2 variables are equal to zero. That is, under the null 

hypothesis of no group differences in means, we would expect both regression coefficients to be 

equal to zero regardless of coding scheme. So rejection of the null that the “true” R2 equals zero 

is equivalent to rejecting the null hypothesis that all the regression coefficients for the variables 

coding group are equal to zero. This will be important later when we discuss probing an 

interaction involving a multicategorical independent variable. 

Testing Interaction Involving a Multicategorical Independent Variable 

 It is well known by communication scholars and other social scientists that interaction 

between two continuous variables (or between two dichotomous variables, or between a 
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dichotomous and a continuous variable) can be tested using regression analysis. If the 

independent variable is X and the moderator is M, then in a model of the form 

XMbMbXbbY 3210
ˆ   (2) 

b3 estimates how much the effect of X on Y changes as M changes by one unit. This can be seen 

most clearly by expressing Equation 2 in an equivalent form 

MbXMbbbY 2310 )(ˆ   (3) 

where b1 + b3M is the conditional effect of X, which we denote X→Y (consistent with the notation 

in Hayes, 2013, and Darlington & Hayes, 2017). That is,  

MbXbY YX 20
ˆ    (4) 

where X→Y = b1 + b3M. If b3 is zero, then X’s effect on Y is linearly unrelated to M, and Equation 

3 reduces to Y = b0 + b1X + b2M, meaning X→Y = b1 and so X’s effect on Y is not dependent on 

M. Rather, it is a constant.  

 A test of moderation of the effect of X on Y by M is typically undertaken in one of two 

ways. Under the null hypothesis of no linear interaction between X and M, the product of XM 

should be ignored when attempting to estimate Y. So a null hypothesis test that the coefficient for 

the product term equals zero in Equations 2 or 3 is a test of linear moderation of X’s effect on Y 

by M. Alternatively, a model comparison approach can be used. This involves assessing the fit of 

two models of Y, one with and one without XM in the model. Although the R2 for the model with 

XM will descriptively fit better (as adding a variable to a model almost always increases R2), a 

formal test of significance for the change in R2 should be conducted. A statistically significant 

increase in R2 when XM is added to a model that contains X and M is affirmative evidence for 

moderation of the effect of X on Y by M. These are mathematically equivalent tests and will 
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generate the same p-value for the test of the null hypothesis of no linear interaction between X 

and M (see Hayes, 2013, for a discussion). 

 Before discussing a test of moderation when X is multicategorical, it is worth pointing out 

a frequent confusion. Many researchers mistakenly interpret b1 in Equation 2 as the “main 

effect” or “average effect” of X on Y, aggregating across values of M, or as the effect of X when 

“controlling for M and the interaction.” This misunderstanding has been clarified by many 

(Hayes, 2013; Hayes, Glynn, & Huge, 2012; Irwin & McClelland, 2001; Spiller, Fitzsimons, 

Lynch, & McClelland, 2013), however we find it pertinent to repeat it here. In Equation 2, b1 is a 

conditional effect of X, not a main or average effect of X, nor is it the effect of X controlling for 

M and XM. Rather, it estimates the effect of X on Y when M = 0, which is seen most clearly in 

Equation 3. This estimate and corresponding hypothesis test or confidence interval may or may 

not have any substantive interpretation, depending on whether zero exists on the measurement 

scale for M. This will be important later when discussing probing an interaction involving a 

multicategorical X.  

If X is a multicategorical variable coding groups and the goal is to assess the moderation 

of the X effect on Y by M, the multicategorical variable must first be coded appropriately, such as 

discussed in the prior section. Once this is accomplished, regress Y on the k − 1 group codes Dj 

representing the multicategorical X variable, M, and the k − 1 products involving Dj and M. For 

instance, with k = 3 groups, and thus two variables D1 and D2 coding the groups, 

MDbMDbMbDbDbbY 2514322110
ˆ   (5) 

This model allows X’s effect on Y to depend linearly on M. More specifically, it allows the 

differences between means represented by the coding system used to vary linearly with M. 

Recall from the prior section that when k = 3, the regression coefficients for D1 and D2 represent 
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differences between means or groups of means. In Equation 5, these differences are now linear 

functions of M, as can be seen by writing Equation 5 in an equivalent form 

MbDMbbDMbbbY 32521410 )()(ˆ   (6) 

That is, “the effect of D1” on Y is b1 + b4M, and “the effect of D2”on Y is b2 + b5M. But because 

D1 and D2 represent X, we can say instead that X’s effect on Y is a function of M. Using the 

notation introduced earlier, Equation 6 can be expressed as 

MbDDbY YDYD 3210 21

ˆ     (7) 

where D1→Y and D2→Y are the conditional effects of D1 and D2 on Y (and thus, the conditional 

effect of X) defined by the functions b1 + b4M and b2 + b5M, respectively.  

An omnibus null hypothesis test of no interaction between X and M requires a model 

comparison approach. This is accomplished by comparing the fit of this model (in Equation 5) to 

a constrained model that fixes b4 and b5 to zero. This constrained model looks like 

MbDbDbbY 322110
ˆ   (8) 

which is equivalent to Equations 5 and 6 with the constraint imposed that b4 = b5 = 0. The fit of 

these two models can be compared by computing the difference between their squared 

multiple correlations, 2
1

2
2

2 RRR  , where 2
2R  and 2

1R  are the squared multiple correlations 

for the linear moderation model (Equations 5 or 6) and the constrained model (Equation 8) 

respectively.  

In its most general form, when X has k categories represented by k – 1 codes, under the 

standard assumptions of regression and the null hypothesis of no interaction between M and a 

multicategorical X, the difference between the fit of the model without the k – 1 products ( 2
1R for 
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the model from Equation 8) and the model with the k – 1 products ( 2
2R  for the model from 

Equation 5 or 6) can be converted to an F-ratio 

)1)(1(

)(
2
2

2
1

2
2

Rk

RRdf
F residual




  
(9) 

that follows the F(k −1, dfresidual) distribution, where dfresidual is the residual degrees of freedom 

from the model expressed in Equation 8. A sufficiently small p-value leads to the inference that 

X’s effect on Y depends linearly on M. Thankfully, the outcome of this test does not depend on 

the coding system used for representing the k groups that constitute X. Whether you use indicator 

coding, sequential coding, Helmert coding, or some other legitimate system, the F-ratio and p-

value will be the same. Note that this test does not require centering of any of the variables used 

to construct the products, contrary to widely-believed myth (see e.g., Hayes, 2013). 

This test can be conducted with any statistical program capable of conducting 

hierarchical entry of predictors to a regression model or that can test constraints on subsets 

of regressors. To illustrate, we examine whether the effect of video game content on 

endorsement of masculine beliefs depends on player age. So age is the moderator M, video game 

condition is the independent variable X, and the dependent variable remains masculine beliefs. 

Because the test of interaction is invariant to method of coding the three conditions, we use 

indictor coding of groups with the no violence game as the reference. Later we use Helmert 

coding, for reasons discussed then. 

The SPSS code below constructs two products between indicator variables held in D1 and 

D2 (with the control no violence game as the reference) and age and conducts the test of 

interaction between game played and age: 

compute d1age = d1*age. 
compute d2age = d2*age. 
regression/statistics defaults cha/dep=mbelief/method=enter d1 d2 age 
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     /method=enter d1age d2age. 
 
The resulting model (listed as “Model 1” in SPSS output) that fixes the effect of video game (X) 

on masculine beliefs (Y) to be independent of age (M) (i.e., without the two products between the 

two D codes and M ) is 

MDDY 033.0451.0146.0055.2ˆ
21   (10)

with R2 = 0.044. For the model with the two products representing the moderation of the effect of 

video game play linearly by age (listed as “Model 2” in SPSS output), 

MDMDMDDY 2121 475.0301.0247.0230.8354.5639.1ˆ   (11)

and R2 = 0.092. The difference between these (provided in SPSS output) is ΔR2 = 0.048, F(2, 

149) = 3.935, p = .022. Thus, the effect of video game content on masculine beliefs depends on 

age of the player.  

Again, the outcome of this test is not dependent on how the groups are coded.  Had we 

used sequential or Helmert coding of conditions rather than indicator coding, we would get the 

same result for the test of interaction. But the regression coefficients would be different 

depending on the coding system, as they correspond to different comparisons of group means.   

Implementation in PROCESS for SPSS and SAS 

In the bulk of the rest of this tutorial, we focus our computational instructions on the use 

of the PROCESS macro available for SPSS and SAS, as it conducts this test and has many 

additional features for probing and visualizing interactions that simplify what are otherwise 

rather tedious tasks described later. PROCESS is introduced and documented in Hayes (2013) 

and is freely available from www.processmacro.org along with an addendum to the 

documentation that describes some of its functions specific to testing interactions involving a 
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multicategorical variable. We show SPSS commands here. The SAS versions of these commands 

are similar; see the documentation.3 

In the PROCESS syntax, the focal predictor must be specified as “X” and the 

moderator specified as “M”. Model 1 is a moderation model with M moderating the effect of X 

on Y . The PROCESS command that conducts this analysis is 

PROCESS vars=mbelief game age/x=game/m=age/y=mbelief/mcx=3/plot=1/model=1. 

There is no need to construct the D1M and D2M products prior to analysis, as PROCESS 

understands that these products are needed to estimate the model and will construct them itself.  

The resulting output can be found in Appendix 1. The test of interaction is provided in 

the section of output labeled “R-square increase due to interaction.” As can be seen, PROCESS 

produces the F-ratio and p-value for the test of interaction as well as the change in R2 resulting 

from adding the product terms, R2 = .048, F(2,149) = 3.935, p = .022. As the R2 for the 

unconstrained model is R2 = 0.092 (as shown in the “Model Summary” section of output), we 

can infer from this output that the fit of the model without the two product terms is R2 = 0.092 – 

0.048 = 0.044. 

In this command, the  “mcx=3” option instructs PROCESS that the variable listed as X is 

a multicategorical variable and to use Helmert coding of groups. PROCESS does the Helmert 

coding automatically and displays the codes toward the top of the output. Because the test of 

interaction is not dependent on the coding system used, other coding systems implemented in 

PROCESS could be specified instead (e.g., “mcx=1” specifies indicator coding and  

“mcx=2” specifies sequential coding; see the documentation). Indeed, observe that the test 

printed by PROCESS is the same as the test generated using the hierarchical variable entry 
                                                            
3 The RLM macro for SPSS and SAS also has features for estimating, probing, and visualizing 
regression models with an interaction involving a multicategorical variable. See Darlington and 
Hayes (2017) for a discussion of the RLM macro and guidance on its use. 
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method when indicator coding was used. Later we clarify why we chose the Helmert coding 

option rather than indicator coding. The “plot=1” option produces information useful for 

visualizing the model, the topic of the next section. 

Visualizing the Model 

Interaction between two variables can be difficult to interpret without a picture of the 

model. The regression model can be used to produce an estimate of Y at various values of the 

independent variable and moderator (and covariates; the inclusion of covariates is discussed 

later) that can then be plotted in order to better understand the nature of the interaction. This 

requires choosing a set of combinations of the independent variable and moderator and plugging 

them into the regression equation. When the independent variable or moderator is 

multicategorical, the choice is determined for you in part. You would want to use all the possible 

combinations of codes representing the groups. For instance, with a k = 3 category focal 

predictor or moderator, use the three patterns of D1 and D2 that code the groups. Along with 

these, you would choose values of the other variable within the range of the data. For instance, if 

your independent variable is multicategorical but the moderator is a dichotomous, choose the two 

values of the moderator as coded in the data. Or if the moderator is continuous, as in our video 

game example, you could use values corresponding to various percentiles of the distribution, 

such as the 25th, 50th, and 75th percentiles. An alternative and common choice is the mean, a 

standard deviation below the mean, and a standard deviation above the mean of the moderator.4 

                                                            
4 If using plus and minus one standard deviation from the mean, be careful to check your data to 
make sure that both of these are within the range of the available data, otherwise the plot will 
depict the model in a region of space where you have no data or that may be beyond the scale of 
measurement of the variables. 
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In our example, video game is a multicategorical variable represented with D1 and D2, 

and age is treated as a continuum. We might choose to use values of the moderator (age) 

corresponding to the sample mean age (16.826 years), as well as one standard deviation below 

the mean (15.577 years) and one standard deviation above the mean (18.075 years). When 

crossed with the three patterns of D1 and D2 coding groups, this produces nine combinations of X 

and M that, when plugged into the regression equation, yields nine estimate of Y for players of 

different ages who played different games.  For example, when using indicator coding, the 

regression model in Equation 11 generates an estimate of masculine beliefs for an adolescent of 

average age in the sample (16.826 years) who played the violence-only game (D1 = 1, D2 = 0) 

equal to 

Ŷ = –1.639 + 5.354(1) + 8.230(0) + 0.247(16.826) – 0.301(1)(16.826) – 0.475(0)(16.826) = 2.811 

Notice that this is the same estimate that the regression model using Helmert coding generates. 

From the PROCESS output in Appendix 1, the regression model using Helmert coding of groups 

is 

MDMDMDDY 2121 174.0388.0012.0876.2792.6889.2ˆ   (12)

which when applied to an adolescent of average age who played the violence-only game (D1 = 

1/3, D2 = –1/2) generates 

811.2)826.16)(2/1(174.0

)826.16)(3/1(388.0)826.16(012.0)2/1(876.2)3/1(792.6889.2ˆ


Y

 
(13)

Repeating these computations for many combinations of X and M and then plotting the estimates 

of Y as a function of X and M in the form of a line graph results in Figure 1. The dots on the lines 

in Figure 1 are nine estimated values of Y using Equations 11 or 12 for combinations of D1 and 

D2 (video game content) and three values of M. 
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PROCESS has an option that reduces much of the effort required to generate such a plot, 

and it does the computations to a much higher degree of precision than you would when 

calculating the estimates of Y by hand. The “plot=1” option generates the table found in the 

section of output in Appendix 1 titled “Data for visualizing the conditional effect of X on Y”. The 

SPSS version of PROCESS even writes a program to read the data and generate a plot. Cutting 

and pasting this into an SPSS syntax file and then executing will produce a scatterplot which can 

be edited to produce something like Figure 1. Indeed, Figure 1 was generated using PROCESS in 

this way and then editing the resulting plot before imported it into this manuscript. 

Most likely, the first thing that comes to your attention looking at Figure 1 is three lines 

that differ in slope, meaning that the relationship between age and masculine beliefs appears to 

vary depending on the video game played. Although there is nothing wrong with this 

interpretation (given the symmetry property of interaction), it reverses the focal predictor and 

moderator relative to how the research question was phrased. We earlier asked whether the effect 

of video game content on masculine beliefs varies depending on the age of the player. Framed in 

this way, our interest is not in the different slopes of the lines in Figure 1, but rather the gap 

between the lines at given values of age on the horizontal axis. The gap between the lines 

conditioned at a specific value of age reflects the differences in masculine beliefs resulting from 

playing games that differ in content. From this perspective, the interaction between age and 

video game content reflects the fact that the gaps between the lines vary in distance as a function 

of age. It appears from Figure 1 that games differing in violent and sexist content have the 

biggest effect on masculine beliefs among younger adolescents compared to the no violence 

condition. Among older adolescents, the smaller gaps between the lines reflect a smaller effect of 
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video game content on masculine beliefs. Making sense of how the gaps between the lines vary 

with age is accomplished by probing the interaction, the topic of the next section. 

Probing the Interaction 

 A visual depiction of an interaction helps to make sense of what the data may be telling 

you about the phenomenon you are studying. But as the visual depiction is generated from model 

coefficients, each with sampling error attached to them, this means that the visual depiction is 

sample specific. We observed looking at a picture of this model that it seems that the effect of 

video game content on masculine beliefs is bigger among younger adolescents than among older 

ones, but a different sample of 155 adolescents would certainly yield different model coefficients 

and therefore a different visual depiction of the model. So how much confidence should we have 

in specific claims such as this when the entire picture has sampling variance attached to it?  

Having established interaction and visualizing the model, it is traditional to further the 

analysis by “probing” the interaction. This exercise involves dissecting the model by estimating 

the effect of the independent variable on the dependent variable at one or more values of the 

moderator, followed by an inference about that effect, thereby allowing for more definitive 

claims about in what region of the moderator the independent variable X seems to be related to Y 

and in what region it is not. 

 Here we discuss two methods for probing an interaction, one that is quite popular, and 

one that is less so but that is becoming more popular as its implementation has been made easier 

by various computational aides for popular software and tools available online. Both of these 

methods require distinguishing between an omnibus test of the effect of a multicategorical 

independent variable and a pairwise test. An omnibus test answers the vague question “Does X 

have an effect on Y?” without providing anything specific about the nature of that effect if it 
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exists. In contrast, a pairwise test determines whether estimates of Y from the model vary 

between two specific groups or combination of groups, with those comparisons determined by 

how the multicategorical independent is represented in the regression model (i.e., how the groups 

are coded). We address omnibus and pairwise tests for each of the two probing methods we 

outline. 

Pick-a-Point Procedure 

The pick-a-point approach, also called an analysis of simple slopes or a spotlight 

analysis, involves choosing a point on the distribution of the moderator M and estimating 

whether the groups differ from each other on Y, on average, conditioned on that value of M. Any 

value or values of M can be chosen. When M is continuous, this exercise would typically be 

repeated for at least two or three values of M.  

Omnibus Inference. We saw that in a model of the form 

MDbMDbMbDbDbbY 2514322110
ˆ   (14)

we can test for interaction between X and M with a test of the null hypothesis that the regression 

coefficients for the two products are both equal to zero. This is accomplished by quantifying how 

much R2 increases when D1M and D2M are added to the model and converting this change to an 

F-ratio using Equation 9, from which a p-value can then be derived to test the null hypothesis of 

no interaction. 

Suppose that instead we conduct a test of the null hypothesis that both of the regression 

coefficients for D1 and D2 are zero. In Equation 14, b1 estimates the effect of D1 on Y when M = 

0, and b2 estimates the effect of D2 on Y when M = 0, because D1Y = b1 + b4M and D2Y = b2 + 

b5M, which reduce to b1 and b2 when M = 0. But D1 and D2 together represent the 

multicategorical X, so testing that b1 and b2 are both zero would be like testing whether X has an 
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effect on Y when M = 0. This would be accomplished by calculating R2 for the model of Y that 

includes M, D1M, and D2M, and then adding D1 and D2 and quantifying the increase in R2. Using 

Equation 9, we can convert this difference to a F-ratio and then get a p-value. A sufficiently 

small p-value leads to a rejection of the null that there is no effect of X on Y when M = 0.  

But what we want is a test of equality of the estimated group means (i.e., Y estimated in 

each group) when M is some value we choose rather than zero, since zero may not even be a 

meaningful value on the measurement scale (for example, in the video game example, M = 0 

corresponds to a newborn—a player with an age of 0). For instance, we could test whether video 

game content affects masculine beliefs among adolescents who are “relatively young.” We can 

operationalize “relatively young” however we want.  A common procedure is to use a specific 

value in the distribution of the data such as a standard deviation below the mean, or the 25th 

percentile. Of course, any other reasonable and justifiable value could be used. 

This test is accomplished by first centering M around the value chosen by constructing a 

new variable M' = M – m, where m is the value of M chosen for the conditioning. If we define 

“relatively young” adolescents as those one standard deviation below the mean (m = 15.577 or 

about 15 and half years old), then we construct a new variable M' = M – 15.577. Importantly, 

note that when M = 15.577, M' = 0. We then estimate two models: 

Model 1: MDbMDbMbbY  251430
ˆ  (15)

Model 2: MDbMDbMbDbDbbY  2514322110
ˆ  (16)

and test whether Model 2 fits better than Model 1 using Equation 9 to get the F-ratio for the test. 

This is a test of the null hypothesis that the regression coefficients for D1 and D2 are both zero, 

which is equivalent to the null hypothesis that the three group means are equal when M' = 0. But 

since M' = 0 when M = m, we are actually testing the null hypothesis of equality of the estimated 
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group means when M = m, which in our example is 15.577 years old and exactly what we want 

to test. The outcome of this test will not depend on the system used for coding the groups, nor 

does it matter that you may not have any cases in the data with a value of M exactly equal to m.  

When this test is implemented using the video game data (using Helmert coding of 

groups as described earlier) Model 1 is 

MDMDMY  21 156.0090.0094.0858.2ˆ  (17)

with R2 = 0.013, and Model 2 is 

MDMDMDDY  2121 174.0388.0012.0163.0753.0708.2ˆ  (18)

with R2 = 0.092. Model 2 is a better fitting model, F(2,149) = 6.424, p < .022. So we conclude 

that among a group of relatively young adolescents (about 15 and a half years old), video game 

content has an effect on masculine beliefs. Using the equation for Model 2, setting M' to 0 and 

applying the model for the three combinations of D1 and D2 Helmert codes representing the three 

groups, we can derive that the estimated group means among such a group of adolescents are 

2.206, 2.878, and 3.041 for the no violence, violence-only, and violent-sexist conditions, 

respectively. These are the points on the three lines in Figure 1 when M = 15.577. 

This procedure can then be repeated for some other values of M.  For instance, we could 

repeat this process for adolescents “relatively moderate” in age, operationalized as the median 

age in the sample or perhaps the sample mean, and then for adolescents “relatively older”, such 

as a standard deviation above the mean age or perhaps the 75th percentile. When we did so using 

the mean age (M = 16.826 or just under 17 years old) and a standard deviation above the mean 

age (M = 18.076 or about 18 years old), the F-ratios and p-values for the change in R2 were 

F(2,149) = 1.710, p = 0.184, and F(2,149) = 0.377, p = 0.687, respectively. The estimated means 

being compared are the points on the line in Figure 1 when M = 16.826 and M = 18.076.  From 
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these tests, we conclude that among adolescents relatively moderate or older in age, video game 

content appears not to affect masculine beliefs, on average. The results of this study suggest that 

video game content affects masculine beliefs only among the relatively younger adolescent 

players. 

 PROCESS automatically implements this method when the independent variable is 

specified as a multicategorical variable using model 1. As can be seen in Appendix 1, PROCESS 

provides a test of the difference in estimated Y for the three video game conditions at values of 

the moderator corresponding to a standard deviation below the mean, the mean, and a standard 

deviation above the mean. PROCESS prints the F-ratio, change in R2, a p-value, and also the 

estimates of Y from the model when the moderator is centered around the specific value 

displayed in the corresponding section of output. The F-ratios and p-values are the same as the 

F-ratios and p-values we generated in our discussion above. PROCESS also constructs the 

estimated means conditioned on these values of the moderators, using the procedure described 

earlier. 

If you prefer to use different values of the moderator for conditioning the omnibus test of 

the effect of the independent variable than PROCESS uses by default, you can do so with a 

couple of options. You can tell PROCESS to condition on various percentiles of the distribution, 

or you can choose a specific value of the moderator. See the documentation. 

 Pairwise Inference. This omnibus inference for the effect of the independent variable at 

values of M results in only the vague conclusion that there is or is a not a difference between the 

k groups on Y when M is a specific value. It does not specify which groups differ from which. 

Given this, one might forgo the omnibus approach entirely and look for differences between 

specific groups on Y at one or more values of M. Alternatively, one might use the omnibus 
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inference about the effect of the independent variable at a value of M as a gatekeeper for 

deciding whether or not to further explore whether specific groups differ from which at that 

value of M. 

 In this example, we have used Helmert coding of groups. This was a strategic decision 

and guided by what seemed like the most meaningful comparisons when examining the effects of 

content on masculine beliefs. In this study, there are three groups of adolescent participants who 

played games differing in content. We could have used an indicator coding system with the no 

violence condition as the reference, with D1 and D2 used as indicators for those assigned to the 

violence-only and violent-sexist conditions, respectively. As discussed earlier, effects for D1 

would then quantify differences in mean masculine beliefs between the no violence and 

violence-only conditions, and effects for D2 would quantify differences in mean masculine 

beliefs between the no violence and violent-sexist conditions. But a more meaningful set of 

comparisons would be focused on the following questions: Does any type of violent video game 

content (whether violence-only or violent-sexist) result in an elevation of masculine beliefs 

relative to no such content? And does adding sexist content to violence produce a difference in 

masculine beliefs relative to when the content is just violent?  

Helmert coding accomplishes this. Using the Helmert coding system described earlier, 

the effect of D1 quantifies the difference between the average masculine beliefs of those in the no 

violence condition and the unweighted average masculine beliefs for those who received some 

violent content (violence-only, or violent-sexist). And the effect of D2 quantifies the difference 

between the average masculine beliefs of those who received only violent content and those who 

received both violent and sexist content. For the omnibus test, the coding makes no difference in 

the results obtained, but for pairwise tests, the system of coding used determines the information 
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you can extract from the regression model about relative differences between specific groups or 

combinations of groups. 

 The presence of the products involving M and the D variables complicates interpretation 

of D1 and D2’s effects. From the PROCESS output in Appendix 1 (also see our discussion 

resulting in Equation 12) the regression model when using Helmert coding of groups is 

MDMDMDDY 2121 174.0388.0012.0876.2792.6889.2ˆ   (19)

In this model, the effect of D1 is D1→Y = 6.792 – 0.388M, and the effect of D2 is D2→Y = 2.876 – 

0.174M. Both of these differences are a function of \age (M), with b4 and b5 quantifying the 

extent to which age is related to these differences. But do we have evidence that these effects 

significantly vary with age? Hypothesis tests for the regression coefficients for the two products 

answer this question. As can be seen in the PROCESS output, b4 (the coefficient for the D1M 

product) is statistically significant, b4 = –0.388, p = .006, meaning that age and content, as 

represented by the D1 comparison, interact. In other words, the effect of receiving any violence 

relative to no violence depends on age. However, b5 (the coefficient for the D2M product) is not 

statistically significant, b5 = –0.174, p = .347, meaning that age and content, as represented by 

the D2 comparison, do not interact. So the effect of receiving sexist content in addition to 

violence relative to only violent content does not significantly vary with age. 

 Having established that age is related to the size of the effect of any violent content 

compared to no violence, we can then probe this interaction by estimating this effect at specific 

values of age. Earlier we operationalized “relatively young,” “relatively moderate” and 

“relatively older” adolescent players using the mean, a standard deviation below the mean, and a 

standard deviation above the mean. Sticking with these operationalizations, let’s estimate the 

effect of some violence relative to none among relatively young players. Recall that in Equation 
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14, b1 estimates the effect of D1 on Y when M = 0 (because D1→Y = b1 + b4M, which is b1 when 

M = 0), but that in Equation 16, b1 estimates the effect of D1 on Y when M' = 0, where M' is M 

centered around some value m. So we make M' = 0 when M = 15.577 by centering M around 

15.577 and then estimating Equation 16. Doing so yields 

MDMDMDDY  2121 174.0388.0012.0163.0753.0708.2ˆ  (20)

 (recall we already estimated this in the omnibus inference section earlier; see Equation 18). In 

this model, b1 estimates the effect of D1 (i.e., some violent content relative to none) among 

relatively young players, and we get a standard error, and t- and p-values for this comparison. In 

this analysis, b1 = 0.753, p = .002. So we can say that among relatively young adolescents, some 

violent video game content results in significantly higher masculine beliefs than does no violent 

content. Repeating this process, centering M around the mean age and again a standard deviation 

above the mean age yields b1 = 0.269, p = .113 when M = 17.826; and b1 = –0.215, p = 0.388, 

when M = 18.076. So we see no statistically significant differences in masculine beliefs when 

there is some violent content compared to none among moderate and older adolescents.  

 Earlier, we didn’t find evidence that age interacts with the effect of violent content alone 

compared to violence plus sexist content. Typically, without evidence of an interaction, there 

would be no point to estimating the effect of X (or some subset of X, such as comparisons 

represented by D1 or D2) at different values of M.  An investigator who does so might be tempted 

to interpret a difference in p-values for the conditional effect at different values of M as evidence 

that these conditional effects differ from each other, which implies interaction.  But difference in 

significance does not imply significantly different (c.f., Gelman & Stern, 2006).  It is the test of 

interaction that provides a formal test of whether conditional effects of X differ across values of 

moderator M.  However, if there is specific point of interest on the moderator continuum, it may 
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still be informative to estimate the conditional effect of X at that value of M.  For instance, we 

might check whether, for relatively young adolescents (among whom we saw an effect of some 

violent content), whether adding sexist to violent content results in a difference in masculine 

beliefs. In the model with M centered around 15.577 (Equation 20), b2 answers this question. In 

this model, b2 = 0.163 and is not statistically significant (p = .478), meaning no significant 

difference in masculine beliefs on average among the younger adolescents who played a game 

with violence only relative to those who played a game with violent and sexist content.  

 PROCESS automates this whole procedure. Examining the second half of the output in 

Appendix 1, observe that PROCESS generates estimates of the effect of X at values of M 

corresponding to a standard deviation below the mean, the mean, and a standard deviation above 

the mean. The omnibus test of group differences was discussed already. Just above these three 

sections of output, PROCESS prints b1 and b2 after centering M in the fashion just described, 

along with standard errors, t- and p-values, and confidence intervals. Also provided are the 

model derived estimates of Y for the three groups conditioned on these values of M. These 

correspond to the nine estimated values in Figure 1.  Options exist for choosing values of M, or 

using percentiles of the distribution of M for centering. See the documentation. 

The Johnson-Neyman Technique 

Although the pick-a-point procedure is common and popular, it suffers from a major 

flaw. Typically, there is little rationale for choosing some values of M rather than others. The 

choice is usually arbitrary, and yet the choice will affect the resulting tests and inference. 

Although using the mean, a standard deviation below the mean, and a standard deviation above 

the mean is a common convention, this is still arbitrary, and no more or less arbitrary than 

choosing some other values, such as various percentiles of the distribution of the moderator. On 
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occasion, theory or applied concerns might suggest certain meaningful values of M to choose, 

but this is rather rare in our experience. 

The problem of how to select values of the moderator without relying on arbitrary 

conventions or haphazard choices is solved through the use of the Johnson-Neyman (JN) 

technique (Johnson & Neyman, 1936; Bauer & Curran, 2005) . The JN technique for probing an 

interaction is like the pick-a-point approach in reverse. Rather than choosing a value or values of 

M in advance and then estimating and testing X’s effect on Y at that value or values, the JN 

technique derives the value or values along the continuum of M at which point the effect of X on 

Y is just statistically significant at a specified level of significance, such as .05. The value or 

values found (if any) demarcate the region of significance of the effect of X on Y. With these 

values derived, one is then in a position to discuss for whom or under what circumstances, as 

operationalized by M, X exerts an effect on Y and for whom or under what circumstances it does 

not. 

Omnibus Inference. Though historically not widely used, recent implementations of the 

JN technique on the web (Preacher, Curran, & Bauer, 2006) and in macros for SPSS and SAS 

(Hayes, 2013; Hayes & Matthes, 2009) when X is dichotomous or a continuum are probably 

responsible for its recent increase its popularity, including in the field of communication (for 

recent uses, see e.g., Beullens, Rhodes, & Eggermont, 2016; Nan, Madden, Richards, Holt, 

Wang, & Tracy, 2016). However, when X is a multicategorical variable, the derivation of regions 

of significance for an omnibus group comparison is quite a bit more complicated than when X is 

dichotomous or a continuum. Quite simply, the mathematics is very tedious. When X represents 

three groups, it involves finding the roots of fourth order polynomial. With four groups, the 
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polynomial is of the eighth order. With four or more groups, no solution can be derived 

analytically.  

To deal with this problem, Montoya (2016) produced a computational tool for SPSS and 

SAS named OGRS (for Omnibus Groups Regions of Significance) that iteratively searches the 

moderator space in search of points along the moderator continuum where the effect of a 

multicategorical X on Y transitions between statistically significant and not significant. Using the 

bisection method (Burden & Faires, 1985), it breaks the moderator continuum into segments and 

calculates the F-ratio and corresponding p-value for a test of the null hypothesis of no group 

differences in Y at many values of M within each segment. It searches iteratively within each 

segment until if finds an F-ratio for the effect of X on Y at a value of M that is just statistically 

significant at a specified -level or it determines that no such value of M exists in that segment. 

It repeats this across the entire observed range of the moderator and reports the values of M 

found.  So OGRS does not derive the regions of significance analytically, but rather, through an 

iterative computational hunt. But tests of its effectiveness described by Montoya (2016) show 

that it is usually quick to find these points of transition, and the points it finds when they can be 

derived analytically correspond very closely to what OGRS reports.   

OGRS is publicly available and downloadable from www.akmontoya.com along with the 

documentation. In our example, the goal is to find the region or regions of significance along the 

age continuum for the effect of video game content on masculine beliefs. The OGRS command 

in SPSS is 

ogrs vars=mbelief game age/y=mbelief/x=game/m=age. 

The resulting output can be found in Appendix 2. As can be seen, OGRS automatically codes the 

variable specified as X using indicator coding (as this is an omnibus approach, the solution is not 

dependent on the system of coding used), reports the regression model and test of interaction, 
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prints any values of M found where the F-ratio for the effect of X is just statistically significant at 

.05 (the  -level can be changed; see the documentation), and produces a table of many values of 

M, the F-ratios for the effect of X at those value of M, corresponding changes in R2 described 

earlier, and p-values. As can be seen, OGRS identifies M = 16.398 (a bit under 16 and a half 

years old) as a transition point defining a region of significance. The table shows that among 

adolescents this old or younger, there is a statistically significant effect of video game content on 

masculine beliefs at the  = .05 level. But among adolescents older than this, there is no 

statistically significant difference in average masculine beliefs resulting from differences in the 

content of the video game.  

Notice that this result corresponds with our previous findings from the pick-a-point 

approach, where we found that among relatively young adolescents (M = 15.577) there was an 

effect of video game content on masculine beliefs. However, for those individuals with age 

greater than 16.398, there were no effects of video game content on masculine beliefs (M = 

16.826 and M = 18.076).  But the Johnson-Neyman technique generates results that do not 

require an choice of values of M prior to conducting the test. Rather, based on the transition point 

identified, we know at what values of M the effect of X is statistically significant and at what 

values it is not.5 

Pairwise Inference. Remember that with k groups, the k – 1 D variables coding groups 

represent comparisons between estimates of group means, depending on the system used for 

coding groups. These differences are functions of the moderator when the k – 1 crossproducts 

involving the Ds and M are in the model. For instance, with three groups, as discussed earlier, 
                                                            
5 It is important to acknowledge that any point of transition identified by the Johnson-Neyman method is merely a 
point estimate.  As it is derived from regression coefficients and standard errors that are subject to sampling 
variance, so too is a region of significance identified by this method.  In principle, one could construct a confidence 
interval for a Johnson-Neyman solution, but we are not aware of any published work on this topic. 
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the conditional effect of D1 is D1→Y = b1 + b4M and the conditional effect of D2 is D2→Y = b1 + 

b5M. Both of these depend on M. Different values of M will generate different estimates of mean 

differences corresponding to what the D variable codes, and each of these estimates has an 

associated p-value for testing the null hypothesis that the conditional effect of that D at that value 

of M is different from zero, as discussed earlier. 

The JN method can be used for each of the k – 1 D variables, or instead only those that 

significantly interact with M, to find the value or values of M in the function for the effect of that 

D that demarcate regions of significance for the difference coded by the D variable. This can be 

done in PROCESS using a simple trick. With an X with k groups and thus k – 1 D variables 

coding groups, specify one of the D variables as X, and the other k – 2 D codes along with their 

products with M as covariates. When using this approach and the JN method is requested, 

PROCESS will find the value of values of M at which Dj→Y is just statistically different from 

zero at the  = .05 level (the -level can be changed; see the documentation). This can be 

repeated for different D variables, swapping out which D plays the role of X and which D with 

corresponding products with M are used as covariates. 

To illustrate, recall that our use of Helmert codes produces two D variables whose 

regression coefficients quantify how the masculine beliefs of those in the no violence condition 

differ from the unweighted average beliefs of those in the violent game conditions (D1), and a 

second quantifying how much the beliefs of those in the violence only differ from those in the 

violent-sexist condition (D2). Since our earlier analysis revealed no statistically significant 

moderation of the difference between violence-only and violent-sexist conditions by age (i.e., no 

D2M interaction), we will not search for regions of significance for this comparison. But we did 
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find an interaction between age and the effect of some violence relative the nonviolent game, so 

we will apply the JN method to probe this component of the omnibus interaction. 

To implement this approach, D1 and D2 must be constructed and therefore exist in the 

data prior to executing a PROCESS command. Unlike in our earlier example, PROCESS won’t 

generate these codes for you when using this trick because the mcx option in PROCESS cannot 

be used in conjunction with the JN command. So the commands in SPSS that implement this 

pairwise Johnson-Neyman approach using Helmert coding of groups are 

if (game = 1) d1 = -2/3. 
if (game = 1) d2 = 0. 
if (game = 2) d1 = 1/3. 
if (game = 2) d2 = -1/2. 
if (game = 3) d1 = 1/3. 
if (game = 3) d2 = 1/2. 
compute d2age=d2*age. 
PROCESS vars=d1 d2 age d2age mbelief/y=mbelief/x=d1/m=age/model=1/jn=1. 
 
Observe that we had to first construct and then include the D2M product in the PROCESS 

variable list, but we did not have to do this for D1M, as PROCESS will generate this product for 

itself automatically for Model 1. If we included D1M in the variable list, a long string of errors 

would result because the set of predictors would be singular (i.e., the tolerances of some of the 

predictors would be zero).  

 The PROCESS output generated by this command can be found in Appendix 3. The only 

difference between this output and the output in Appendix 1 is the inclusion of the JN table at the 

end. As can be seen, PROCESS identifies two ages, 16.657 and 19.880, where the estimated 

difference between those in the no violence condition and those in either of the violent game 

conditions transitions between significant and not significant at the .05 level. The first region of 

significance is ages below just about 16 and a half years old, where the violent games seemed to 

result in more masculine beliefs relative to the nonviolent game (because D1→Y is positive in this 

region). The other region is about age 20 and higher, where the reverse seems to be the case. 
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However, PROCESS tells us that only 1.29% of the cases in the data are above the age value 

19.8804. There are just two 20 year olds in the study, and they are the oldest two participants 

study. So it would not be prudent to interpret this region given how little data there are in this 

region of the moderator. The first transition point has about 50% of the data on either side of it, 

so any inference about the conditional effect of D1 at values above or below it is more 

trustworthy.  

Miscellaneous Matters in Conclusion 
 

In this tutorial we have described the theory and mechanics of testing, visualizing, and 

probing an interaction between a multicategorical and continuous variable in linear regression 

analysis. Although all these procedures can be conducted with any OLS regression program, the 

PROCESS and  OGRS macros make the analysis easy and packages the relevant information in 

one handy output. In this closing section we discuss the inclusion of covariates, when the 

moderator is dichotomous rather than continuous, multicategorical moderators, and assumptions. 

Covariates 

To simplify our treatment, we have discussed the estimation and probing of an interaction 

involving a multicategorical variable using a regression model that includes only the independent 

variable and the moderator. In practice, tests of moderation are frequently conducted by 

including additional variables in the model acting as statistical controls or covariates. But 

including covariates does not alter the principles and application we have described here. They 

can simply be included in the regression model, and almost everything we have discussed still 

applies. Covariates can be included in a PROCESS and OGRS command by including them in 

the list of variables in the model. See the documentation. 
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There is one exception to this. When visualizing an interaction, the estimates of Y using 

the procedure we described above are generated from the complete regression model. Those 

computations cannot ignore the covariates. When the model includes covariates, a sensible 

tradition is to set the covariates to their means when generating the estimates of Y for visualizing 

the model. The means for the covariates are weighted according to their regression coefficients, 

and this generates estimates of Y for cases that vary on the independent variable and moderator 

but that are average on all the covariates.  Although it might seem counterintuitive, it is 

mathematically appropriate to use the mean of a dichotomous covariate in these computations, 

even when the coding of the dichotomous variable is arbitrary. 

A Dichotomous Moderator 

The mathematics and procedure we have described for testing and visualizing interaction 

involving a multicategorical independent variable in this paper apply without modification when 

the moderator is dichotomous. But the Johnson-Neyman procedure could not be used for probing 

the interaction because there would be only two discrete values of the moderator. In that case, the 

pick-a-point procedure involves estimating the effect of X on Y at the two values of the 

moderator. If the moderator listed in a PROCESS command is dichotomous, PROCESS will 

automatically produce tests of the interaction and conditional effects of X on Y at each value of 

the moderator. No further input from the user is required.  

When the Moderator is Multicategorical 

 The symmetry property of interactions means that if X’s effect on Y is moderated by M, 

then M’s effect on Y is moderated by X. In our example, the focal predictor X was a 

multicategorical variable and moderator M was a continuous variable, but the model and 

procedure for testing interaction would be the same if M were multicategorical and X were 
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continuous or dichotomous. In that case, M rather than X would be represented by k – 1 variables 

coding group membership. For instance, if M were the three groups coding video game 

condition, represented with two D variables, and X were age, the model allowing age’s 

relationship with masculine beliefs to vary between the three video game conditions would be 

XDbXDbDbDbXbbY 2514231210
ˆ   (21)

We already estimated this model twice above, once using indicator and once using Helmert 

coding of experimental condition that we were calling X then but are now calling M. Equation 21 

can be rewritten in a form that expresses X’s effect on Y as a function of the categorical M: 

2312251410 )(ˆ DbDbXDbDbbbY    

meaning that the conditional effect of X is X→Y = b1+ b4D1 + b5D2 and so it is a function of the 

categorical M. With estimates of b1, b4, and b5, we can plug the three combinations of D1 and D2 

representing the three groups into this function to get the slopes of the three lines in Figure 1. For 

example, when using indicator coding of video game condition with the no violence condition as 

the reference (as earlier), we have 

XDXDDDXY 2121 475.0301.0230.8354.5247.0639.1ˆ   (22)

(which is Equation 11, but we are swapping the roles of X and M so we exchange symbols in 

Equation 22) and so the slope of the line in Figure 1 relating age to masculine beliefs among 

those in the violence only condition (D1 = 1, D2 = 0) is 

054.0)0(475.0)1(301.0247.0 YX  (23)

Comparable computations yield slopes of 0.247 for the no violence condition (D1 = D2 = 0) and 

–0.228 for the violent-sexist condition (D2 = 1, D2 = 0). Had we used the regression coefficients 

from the model with Helmert coding of groups (Equation 12, swapping X and M), we’d get the 

same conditional effects of age on masculine beliefs in the three conditions. And if you wonder 
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whether these slopes differ significantly from each other, they do. That test was already 

conducted when we tested whether the effect of video game condition on masculine beliefs 

differs by age. It does, as the symmetry property tells us that, therefore, the effect of age on 

masculine beliefs differs between the three video game conditions.  

 PROCESS takes care of these computations for you while providing the test of 

interaction and also inferential tests for each of these conditional slopes. The command is 

PROCESS vars=mbelief game age/x=game/m=age/y=mbelief/mcm=1/model=1. 

where mcm=1 tells PROCESS that the moderator M is a multicategorical variable and to use 

indicator coding of groups (mcm=2 generates sequential coding of groups, and mcm=3 generates 

Helmert codes). The output (see Appendix 4) shows that the relationship between age and 

masculine beliefs is statistically significant only in the no violence condition. 

 The regression coefficients for the products and corresponding inferential tests provide 

further information. In this model, b4 and b5 estimate differences between pairs of slopes. With 

the indicator coding system used here, b4 is the difference between the slopes relating age to 

masculine beliefs in the no violence and violence-only condition (b4 = –0.301 = –0.054 – 0.247), 

and b5 is the difference between the slopes in the no violence and violent-sexist conditions (b5 = 

–0.475 = –0.228 – 0.247). As can be seen in Appendix 4, each of these is statistically significant, 

meaning that these pairs of slopes are significantly different from each other. We don’t get a test 

comparing the slopes relating age to masculine beliefs in the violence-only and violent-sexist 

conditions. This test can be conducted by doing the analysis again, changing the reference 

category or using a different coding system that produces such a comparison. 

Multiple Testing 

 When conducting an analysis of variance comparing several groups, one frequently 

requires multiple hypothesis tests or confidence intervals to test for differences between  groups 
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and find the source of those differences, if any.  This raises the specter of Type I error inflation.  

This problem, if it is even construed as such, can be exacerbated when moderation is added to 

the analysis. In addition to a test of interaction, probing an interaction involving a 

multicategorical variable typically requires several additional hypothesis tests.  An investigator 

who is inclined to worry about reporting false positives might ponder compensating for multiple 

tests, such as a Bonferroni correction or using some other approach, prior to accepting the 

results. But our position is that replication rather than statistical adjustments to p-values or 

confidence intervals is the best way to ensure that findings that result from a many hypothesis 

tests can be trusted as reflecting something real about the process or phenomenon being studied. 

Linearity, Homoscedasticity, and Other Assumptions 

 As a regression-based procedure, all the assumptions of ordinary least squares regression 

apply; that the effects estimated are linear and the errors in estimation of Y are conditionally 

normal, equal in variance (homoscedastic), independent, and centered at zero. The use of 

crossproducts to represent interaction also assumes that the moderation is linear, meaning that 

the effect of the independent variable on the dependent variable is linearly related to the 

moderator. Nonlinear moderation is mathematically possible and is accomplished by changing 

the function linking the moderator to the size of the independent variable’s effect on Y.  See, for 

example, Cohen et al. (2003). 

 For a detailed discussion of regression assumptions, see Berry (1993) and Hayes and 

Darlington (2017). Here we address the normality and homoscedasticity assumptions. The 

assumption of normality is the least important of these assumptions, as regression is quite robust 
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to nonnormal errors in estimation.6 The effects of heteroscedasticty (i.e., violation of 

homoscedasticity, or equal conditional variance in errors) on tests of interaction have been 

widely studied (for a review, see Aguinis & Pierce, 1998; more recently, see Overton, 2001, and 

Sheih, 2009), and it is known that inequality in the variance of the errors in estimation can have 

adverse effects on tests of interaction, either by lowering power or, more likely, increasing the 

likelihood of a false positive (i.e., claiming an interaction exists that really does not). Although 

there are many approaches to modifying estimation or hypothesis tests to deal with this (e.g., 

weighted least squares), perhaps the simplest is the use of a heteroscedasticity-consistent 

covariance matrix of the regression parameter estimates. The estimation of the standard errors of 

regression coefficients as well as the F-ratio in Equation 9 rely on the variance-covariance matrix 

of the regression coefficients. Various estimators of this matrix exist that can be substituted in 

the computations (see Hayes and Cai, 2007; Long & Ervin, 2000) that don’t rely on 

homoscedasticity. The net result is a test of interaction that appears to be much less, if at all, 

affected by heteroscedasticity (see Hayes & Agler, 2014, for a small scale simulation). 

PROCESS implements one of these—the HC3 estimator—so with PROCESS it is possible to get 

reasonably valid inference about interaction without assuming equality of the variance of errors 

in estimation. See the documentation for guidance.  

                                                            
6 Contrary to widespread belief, the normality assumption is about the shape in the errors of 
estimation of Y, not Y itself or the distribution of the predictor variables. 
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Appendix 1 
 

The PROCESS output below is from a model with masculine beliefs as the dependent variable Y, 
game content as a multicategorical independent variable X, and age as moderator M. Helmert 
coding is used for coding the three came content conditions. 

 
 
PROCESS vars=mbelief game age/x=game/m=age/y=mbelief/mcx=3/plot=1/model=1 
 
 
*************** PROCESS Procedure for SPSS Release 2.16 ****************** 
 
          Written by Andrew F. Hayes, Ph.D.      www.afhayes.com 
    Documentation available in Hayes (2013). www.guilford.com/p/hayes3 
 
************************************************************************** 
Model = 1 
    Y = mbelief 
    X = game 
    M = age 
 
Sample size 
        155 
 
Coding of categorical X variable for analysis: 
  game    D1    D2 
  1.00  -.67   .00 
  2.00   .33  -.50 
  3.00   .33   .50 
 
************************************************************************** 
Outcome: mbelief 
 
Model Summary 
          R       R-sq        MSE          F        df1        df2          p 
      .3028      .0917      .5789     3.0072     5.0000   149.0000      .0129 
 
Model 
              coeff         se          t          p       LLCI       ULCI 
constant     2.8892     1.1572     2.4967      .0136      .6025     5.1759 
age          -.0116      .0704     -.1651      .8691     -.1508      .1275 
D1           6.7918     2.3228     2.9240      .0040     2.2020    11.3816 
D2           2.8762     2.9793      .9654      .3359    -3.0110     8.7633 
int_1        -.3876      .1382    -2.8048      .0057     -.6607     -.1145 
int_2        -.1742      .1845     -.9438      .3468     -.5388      .1905 
 
Product terms key: 
 int_1     :       D1        X       age 
 int_2     :       D2        X       age 
 
R-square increase due to interaction: 
    R2-chng          F        df1        df2          p 
      .0480     3.9346     2.0000   149.0000      .0216 
 
*************************************************************************** 
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Conditional effect of X on Y at values of the moderator: 
 
Moderator value: 
age    15.5767 
 
        Coeff         se          t          p       LLCI       ULCI 
D1      .7536      .2353     3.2033      .0017      .2887     1.2185 
D2      .1634      .2296      .7114      .4780     -.2904      .6171 
 
Test of equality of conditional means at this value of the moderator 
    R2-chng          F        df1        df2          p 
      .0783     6.4251     2.0000   149.0000      .0021 
 
Estimated conditional means at this value of the moderator 
       game       yhat 
     1.0000     2.2057 
     2.0000     2.8777 
     3.0000     3.0410 
------------- 
Moderator value: 
age    16.8258 
 
        Coeff         se          t          p       LLCI       ULCI 
D1      .2694      .1691     1.5931      .1133     -.0647      .6035 
D2     -.0542      .2465     -.2198      .8263     -.5413      .4330 
 
Test of equality of conditional means at this value of the moderator 
    R2-chng          F        df1        df2          p 
      .0208     1.7101     2.0000   149.0000      .1844 
 
Estimated conditional means at this value of the moderator 
       game       yhat 
     1.0000     2.5140 
     2.0000     2.8105 
     3.0000     2.7563 
------------- 
Moderator value: 
age    18.0750 
 
        Coeff         se          t          p       LLCI       ULCI 
D1     -.2148      .2479     -.8667      .3875     -.7047      .2750 
D2     -.2717      .4184     -.6494      .5171    -1.0985      .5551 
 
Test of equality of conditional means at this value of the moderator 
    R2-chng          F        df1        df2          p 
      .0046      .3770     2.0000   149.0000      .6866 
 
Estimated conditional means at this value of the moderator 
       game       yhat 
     1.0000     2.8223 
     2.0000     2.7433 
     3.0000     2.4716 
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Moderator values are the sample mean and plus/minus one SD from mean 
 
*************************************************************************** 
 
Data for visualizing conditional effect of X on Y 
Paste text below into a SPSS syntax window and execute to produce plot. 
 
DATA LIST FREE/game age mbelief. 
BEGIN DATA. 
 
     1.0000    15.5767     2.2057 
     2.0000    15.5767     2.8777 
     3.0000    15.5767     3.0410 
     1.0000    16.8258     2.5140 
     2.0000    16.8258     2.8105 
     3.0000    16.8258     2.7563 
     1.0000    18.0750     2.8223 
     2.0000    18.0750     2.7433 
     3.0000    18.0750     2.4716 
 
END DATA. 
GRAPH/SCATTERPLOT=age WITH mbelief BY game. 
 
******************** ANALYSIS NOTES AND WARNINGS ************************* 
 
Level of confidence for all confidence intervals in output: 
    95.00 
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Appendix 2 
 

Output from the OGRS macro for finding the regions of significance of the effect of game 
content on masculine beliefs. 
 
ogrs vars=mbelief game age/y=mbelief/x=game/m=age. 
 
******************* OGRS Procedure for SPSS Version 1.1 ******************** 
 
                           Written by Amanda Montoya 
 
***************************************************************************** 
 
Variables: 
X = game 
M = age 
Y = mbelief 
 
Dummy Variable Coding Scheme: 
 game   D1   D2 
    1    1    0 
    2    0    1 
    3    0    0 
 
Sample size: 
  155 
 
***************************************************************************** 
Outcome: mbelief 
 
Model Summary 
          R       R-sq          F        df1        df2          p 
      .3028      .0917     3.0072     5.0000   149.0000      .0129 
 
Model 
              coeff         SE          t          p       LLCI       ULCI 
constant     6.5912     2.4858     2.6515      .0089     1.6792    11.5033 
D1          -8.2299     3.0587    -2.6907      .0079   -14.2739    -2.1859 
D2          -2.8762     2.9793     -.9654      .3359    -8.7633     3.0110 
age          -.2279      .1587    -1.4359      .1531     -.5416      .0857 
Int1          .4747      .1892     2.5096      .0132      .1009      .8485 
Int2          .1742      .1845      .9438      .3468     -.1905      .5388 
 
Interactions: 
 Int1     =        D1       X        age 
 Int2     =        D2       X        age 
 
R-square increase due to interaction(s): 
    R2-chng          F        df1        df2          p 
      .0480     3.9346     2.0000   149.0000      .0216 
 
************************* JOHNSON-NEYMAN TECHNIQUE ************************** 
 
Moderator value(s) defining Johnson-Neyman boundaries of significance: 
    16.3983 
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Conditional effect of X on Y at values of the moderator (M) 
        age    R2-chng          F          p 
    15.0000      .0841     6.8995      .0014 
    15.2500      .0840     6.8934      .0014 
    15.5000      .0804     6.5975      .0018 
    15.7500      .0717     5.8800      .0035 
    16.0000      .0585     4.8004      .0095 
    16.2500      .0446     3.6553      .0282 
    16.3983      .0373     3.0568      .0500 
    16.5000      .0328     2.6927      .0710 
    16.7500      .0234     1.9214      .1500 
    17.0000      .0152     1.2481      .2900 
    17.2500      .0081      .6634      .5166 
    17.5000      .0034      .2756      .7595 
    17.7500      .0021      .1713      .8427 
    18.0000      .0037      .3067      .7363 
    18.2500      .0069      .5686      .5676 
    18.5000      .0106      .8653      .4230 
    18.7500      .0140     1.1495      .3196 
    19.0000      .0171     1.4037      .2489 
    19.2500      .0198     1.6248      .2004 
    19.5000      .0221     1.8154      .1663 
    19.7500      .0241     1.9798      .1417 
    20.0000      .0259     2.1220      .1234 
 
***************************************************************************** 
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Appendix 3 
 
The code below implements a trick using PROCESS to generate regions of significance for a 
pairwise group pairwise when the independent variable is multicategorical. 

 
if (game = 1) d1 = -2/3. 
if (game = 1) d2 = 0. 
if (game = 2) d1 = 1/3. 
if (game = 2) d2 = -1/2. 
if (game = 3) d1 = 1/3. 
if (game = 3) d2 = 1/2. 
compute d2age=d2*age. 
PROCESS vars=d1 d2 age d2age mbelief/y=mbelief/x=d1/m=age/model=1/jn=1. 
 
*************** PROCESS Procedure for SPSS Release 2.16 ****************** 
 
          Written by Andrew F. Hayes, Ph.D.      www.afhayes.com 
    Documentation available in Hayes (2013). www.guilford.com/p/hayes3 
 
************************************************************************** 
Model = 1 
    Y = mbelief 
    X = d1 
    M = age 
 
Statistical Controls: 
CONTROL= d2       d2age 
 
Sample size 
        155 
 
************************************************************************** 
Outcome: mbelief 
 
Model Summary 
          R       R-sq        MSE          F        df1        df2          p 
      .3028      .0917      .5789     3.0072     5.0000   149.0000      .0129 
 
Model 
              coeff         se          t          p       LLCI       ULCI 
constant     2.8892     1.1572     2.4967      .0136      .6025     5.1759 
age          -.0116      .0704     -.1651      .8691     -.1508      .1275 
d1           6.7918     2.3228     2.9240      .0040     2.2020    11.3816 
int_1        -.3876      .1382    -2.8048      .0057     -.6607     -.1145 
d2           2.8762     2.9793      .9654      .3359    -3.0110     8.7633 
d2age        -.1742      .1845     -.9438      .3468     -.5388      .1905 
 
Product terms key: 
 
 int_1    d1          X     age 
 
R-square increase due to interaction(s): 
         R2-chng          F        df1        df2          p 
int_1      .0480     7.8669     1.0000   149.0000      .0057 
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************************************************************************* 
 
 
Conditional effect of X on Y at values of the moderator(s): 
        age     Effect         se          t          p       LLCI       ULCI 
    15.5767      .7536      .2353     3.2033      .0017      .2887     1.2185 
    16.8258      .2694      .1691     1.5931      .1133     -.0647      .6035 
    18.0750     -.2148      .2479     -.8667      .3875     -.7047      .2750 
 
Values for quantitative moderators are the mean and plus/minus one SD from mean. 
Values for dichotomous moderators are the two values of the moderator. 
 
********************* JOHNSON-NEYMAN TECHNIQUE ************************** 
 
Moderator value(s) defining Johnson-Neyman significance region(s) 
      Value    % below    % above 
    16.6568    45.8065    54.1935 
    19.8804    98.7097     1.2903 
 
Conditional effect of X on Y at values of the moderator (M) 
        age     Effect         se          t          p       LLCI       ULCI 
    15.0000      .9772      .2963     3.2976      .0012      .3916     1.5627 
    15.2500      .8802      .2687     3.2765      .0013      .3494     1.4111 
    15.5000      .7833      .2428     3.2268      .0015      .3036     1.2630 
    15.7500      .6864      .2193     3.1307      .0021      .2532     1.1197 
    16.0000      .5895      .1990     2.9623      .0036      .1963      .9827 
    16.2500      .4926      .1831     2.6905      .0079      .1308      .8544 
    16.5000      .3957      .1727     2.2912      .0234      .0544      .7369 
    16.6568      .3349      .1695     1.9760      .0500      .0000      .6698 
    16.7500      .2988      .1689     1.7692      .0789     -.0349      .6325 
    17.0000      .2019      .1720     1.1733      .2425     -.1381      .5418 
    17.2500      .1050      .1818      .5771      .5647     -.2544      .4643 
    17.5000      .0080      .1973      .0407      .9676     -.3818      .3979 
    17.7500     -.0889      .2172     -.4092      .6830     -.5180      .3403 
    18.0000     -.1858      .2404     -.7728      .4409     -.6608      .2893 
    18.2500     -.2827      .2661    -1.0623      .2898     -.8085      .2432 
    18.5000     -.3796      .2936    -1.2928      .1981     -.9598      .2006 
    18.7500     -.4765      .3225    -1.4775      .1417    -1.1138      .1608 
    19.0000     -.5734      .3524    -1.6271      .1058    -1.2698      .1230 
    19.2500     -.6703      .3831    -1.7498      .0822    -1.4274      .0867 
    19.5000     -.7673      .4144    -1.8515      .0661    -1.5861      .0516 
    19.7500     -.8642      .4462    -1.9368      .0547    -1.7458      .0175 
    19.8804     -.9147      .4629    -1.9760      .0500    -1.8294      .0000 
    20.0000     -.9611      .4783    -2.0092      .0463    -1.9063     -.0159 
 
******************** ANALYSIS NOTES AND WARNINGS ************************* 
 
Level of confidence for all confidence intervals in output: 
    95.00 
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Appendix 4 
 
The PROCESS output below is from a model with masculine beliefs as the dependent variable Y, 
game content as a multicategorical moderator variable M, and age as the independent variable X. 
Indicator coding is used for coding the three game content conditions. 
 
PROCESS vars=mbelief game age/x=game/x=age/y=mbelief/mcm=1/model=1. 

************** PROCESS Procedure for SPSS Release 2.16 ******************* 
 
          Written by Andrew F. Hayes, Ph.D.      www.afhayes.com 
    Documentation available in Hayes (2013). www.guilford.com/p/hayes3 
 
************************************************************************** 
Model = 1 
    Y = mbelief 
    X = age 
    M = game 
 
Sample size 
        155 
 
Coding of categorical M variable for analysis: 
  game    D1    D2 
  1.00   .00   .00 
  2.00  1.00   .00 
  3.00   .00  1.00 
 
************************************************************************** 
Outcome: mbelief 
 
Model Summary 
          R       R-sq        MSE          F        df1        df2          p 
      .3028      .0917      .5789     3.0072     5.0000   149.0000      .0129 
 
Model 
              coeff         se          t          p       LLCI       ULCI 
constant    -1.6387     1.7822     -.9195      .3593    -5.1603     1.8829 
age           .2468      .1029     2.3984      .0177      .0435      .4501 
D1           5.3537     2.4235     2.2091      .0287      .5650    10.1425 
D2           8.2299     3.0587     2.6907      .0079     2.1859    14.2739 
int_1        -.3006      .1394    -2.1555      .0327     -.5761     -.0250 
int_2        -.4747      .1892    -2.5096      .0132     -.8485     -.1009 
 
Product terms key: 
 int_1     :       D1        X       age 
 int_2     :       D2        X       age 
 
R-square increase due to interaction: 
    R2-chng          F        df1        df2          p 
      .0480     3.9346     2.0000   149.0000      .0216 
 
*************************************************************************** 
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Conditional Effect of Focal Predictor in Groups Defined by the Moderator 
Variable: 
       game      coeff         se          t          p       LLCI       ULCI 
     1.0000      .2468      .1029     2.3984      .0177      .0435      .4501 
     2.0000     -.0538      .0941     -.5713      .5686     -.2397      .1322 
     3.0000     -.2279      .1587    -1.4359      .1531     -.5416      .0857 
 
******************** ANALYSIS NOTES AND WARNINGS ************************* 
 
Level of confidence for all confidence intervals in output: 
    95.00 
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Table 1 

Indicator, Sequential, and Helmert Coding of Three Groups 

 
  

Indictor 
 

  
Sequential 

  
Helmert 

 
Group 

 
D1 

 
D2 

  
D1 

 
D2 

  
D1 

 
D2 

 
 
1 (Control) 

 
0 

 
0 

  
0 

 
0 

  
–2/3 

 
0 
 

2 (Violence-only) 1 0  1 0  1/3 –1/2 
 

3 (Violent-sexist) 0 1  1 1  1/3   1/2 
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Table 2 

Regression Models of the Form Ŷ = b0 + b1D1 + b2D2 When Estimating Masculine Beliefs as a 

Function of Video Game Content Using the Three Systems for Coding Groups in Table 1 

 
   

Coeff. 
 
   se 

 
   t 

 
 p 
 

Indicator Coding      
 b0 2.628 

 
0.107 24.497 <.001 

 b1 0.150 
 

0.150 1.005 .316 

 b2 0.397 
 

0.155 2.564 .011 

Sequential Coding      
 b0 2.628 

 
0.107 24.497 <.001 

 b1 0.150 
 

0.150 1.005 .316 

 b2 0.247 
 

0.153 1.614 .109 

Helmert Coding      
 b0 2.811 

 
0.062 45.161 <.001 

 b1 0.274 
 

0.132 2.078 .039 

 b2 0.247 
 

0.153 1.614 .109 

 
For all three models, R2 = .042, F(2,152) = 3.335, p = .038. 
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Figure 1. A visual depiction of the interaction between video game content and player age. 


